

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОТИВОГРИБКОВЫХ ЛЕКАРСТВЕ	НЫХ
СРЕДСТВ	5
1.1 История создания противогрибковых лекарственных средств	5
1.2 Классификация противогрибковых препаратов	7
2. ФАРМАКОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА КЛОТРИМАЗОЛА	8
2.1 Химическое строение и физико-химические свойства клотримазола	8
2.2 Связь структуры и действия клотримазола	8
2.3 Фармакокинетика клотримазола	10
2.4 Показания и противопоказания к применению клотримазола	11
3. СПОСОБЫ ПОЛУЧЕНИЯ КЛОТРИМАЗОЛА	12
4. КОНТРОЛЬ КАЧЕСТВА КЛОТРИМАЗОЛА	15
4.1 Проверка на подлинность (идентификация)	15
4.2 Испытания	16
4.3 Количественное определение	18
ЗАКЛЮЧЕНИЕ	19
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	20

ВВЕДЕНИЕ

Инвазивные грибковые инфекции (ИГИ) представляют собой реально существующую и растущую проблему современной медицины. Наблюдается распространенности значительное возрастание 3a последние несколько десятилетий параллельно c увеличением популяции К иммуноскомпрометированных пациентов. основным факторам риска ИГИ относится цитотоксических препаратов развития применение глюкокортикоидов, которые приводят к иммунодефициту, использование инвазивных устройств, включая внутривенные катетеры, ВИЧ-инфекция. При этом прогресс в создании новых антимикотиков не в полной мере соответствует темпам роста распространенности ИГИ. В качестве основного лимитирующего фактора выступают проблемы переносимости и вторичной резистентности системных антимикотиков. К главным последствиям проблемы резистентности относится клиническая неэффективность и изменение спектра возбудителей, в частности преобладание не-albicans видов грибов рода Candida и увеличение частоты выделения мицелиальных патогенов среди разных категорий пациентов [3].

Таким образом, проблема грибковых инфекций ижох является чрезвычайно актуальной, из-за высокой распространенностью данного заболевания. Согласно различным данным микозами страдает каждый четвертый житель планеты, а среди пожилых людей – каждый второй. Микозы стоп и онихомикозы составляют примерно 22% от общей обращаемости к дерматологу [7]. Грибы, кроме поражения кожи и ее придатков, могут выступать качестве причины микотической сенсибилизации, вызывая при этом аллергические реакции и заболевания, такие как микотическая аллергический васкулит, бронхиальная астма [10].

К самым распространенным грибковым инфекциями относятся дерматофитии, вызываемые патогенными грибами родов: Trichophyton,

Містоѕрогит, Еріdегторhyton, имеющие выраженное сродство к кератину и роговым структурам, и кандидоз, вызываемый дрожжеподобными грибами рода Candida. Характерная особенность грибковых инфекций — это безусловная патогенность возбудителей. Как правило, поражение локализуется на гладкой коже, слизистых оболочках и ногтевых пластинах [2]. К одному из противогрибковых препаратом, обладающего широким спектром действия относится клотримазола.

Цель работы заключается в фармакологической характеристике клотримазола.

Задачи:

- 1) рассмотреть историю создания противогрибковых лекарственных средств и их классификацию;
- 2) выявить химическое строение и физико-химические свойства клотримазола;
- 3) определить связь структуры и действия клотримазола, а также фармакокинетику, показания и противопоказания к применению препарата;
 - 4) охарактеризовать способы получения клотримазола;
- 5) рассмотреть, каким образом осуществляется контроль качества клотримазола.

1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОТИВОГРИБКОВЫХ ЛЕКАРСТВЕНЫХ СРЕДСТВ

1.1 История создания противогрибковых лекарственных средств

Противогрибковые препараты, или антимикотики, представляют собой достаточно обширный класс разнообразных химических соединений. Для лечения заболеваний, вызываемых патогенными грибами, в настоящее время используется ряд лекарственных средств, различных по происхождению (природные или синтетические), механизму действия, показаниям к применению (местные или системные инфекции) и способам назначения (наружно, перорально, парентерально) [2].

Клотримазол является противогрибковым препаратом из группы азолов, синтетическим производным имидазола. Клотримазол появился в 1969 г и с тех пор получил широкое применение в местной терапии микозов кожи и 14]. высокой оболочек [2, Это обусловлено слизистых клинической эффективностью И безопасностью препарата, также разнообразием a лекарственных форм. Препаратом проявляется выпускаемых высокая эффективность в случае поражения кожи и слизистых дрожжеподобными грибами Candida И свойственен широкий рода ДЛЯ него спектр противогрибковой активности [2]. Используется только в формах для наружного и местного применения [14]. Согласно патенту RU2237476C1 [12], первое упоминание о клотримазоле относится к 1972 г. (Патент США №3660577), в котором были запатентованы производные N-тритилимидазолы в качестве противогрибковых агентов. Там же было указано, что данные соединения возможно использовать в виде таблеток, капсул, порошков, спреев, водных суспензий, устойчивых инъекционных растворов, суппозиториев и т.п., при этом никакого конкретного состава в патенте не было приведено [12].

Наблюдается постоянное пополнение числа противогрибковых средств, которые состоят на вооружении врачей. При этом в начале прошлого века с целью лечения грибковых инфекций являлось возможным воспользоваться лишь йодидом калия, а из местных средств — лишь антисептиками, многие из которых (жидкость Кастеллани и др.) были созданы позднее. Изменение ситуации не происходило до середины XX века, пока не появился гризеофульвин, предназначенный для лечения дерматофитии. Его внедрение в практику дерматологов оказало влияние на изменение взглядов на характер проведения терапии дерматомикозов и онихомикозов. В результате произошло смещение акцента в их лечении в сторону системной терапии, но при этом местная терапия выступала в качестве основного метода лечения.

Создание и внедрение амфотерицина В, являющегося первым системным антимикотиком, предназначенного для лечения глубоких микозов, совпало с накоплением знаний о глубокой и оппортунистической грибковой инфекции и ее актуализации на фоне развивающихся методов иммуносупрессивной и цитостатической терапии. При этом отличие указанных препаратов состояло в существенных недостатках, которые представлены токсичностью и практически ничтожной абсорбцией в кишечнике.

К следующему достижению в терапии микозов относится создание целого класса системных и местных антимикотиков, являющихся производными имидазола — препаратов второго поколения [14]. Клотримазол был первым синтетическим имидазолиновым антифунгальным препаратом, широко вошедшим в медицинскую практику. Вслед за ним появился целый ряд других противогрибковых производных имидазола (и триазола) [11].

Внедрение противогрибковых средств 3 поколения — триазолов (итраконазол, флуконазол) и тербинафина можно справедливо назвать причиной настоящей революции в терапии микозов. Это обусловлено тем, что впервые стало возможным безопасное лечение и профилактика ряда глубоких микозов, а также возможностью излечить дерматомикозы и онихомикозы в короткие сроки. В результате разработки прогрессивных схем системной терапии препаратами 3

поколения, лечение инфекций кожи стало широко доступным. Именно на данном этапе в качестве основы лечения дерматофитии явилась системная терапия. Параллельно внедрению указанных средств в клиническое обращение поступили новые лекарственные формы местных антимикотиков, которые были представлены аэрозолями, шампунями и лаками для ногтей.

К следующему поколению антимикотиков относятся новые триазолы, которые поступили в клиническую практику (вориконазол) или ожидали внедрения (позаконазол, равуконазол), а также липидные формы полиеновых антибиотиков («амбизом», «ниотран»). К новому поколению можно отнести препараты принципиально новых классов и механизмов действия, в частности – эхинокандины, из которых каспофунгин был внедрен в клиническую практику.

В настоящее время средства разных поколений сосуществуют в практике лечащих врачей. Почти каждое из них по-прежнему может найти применение в зависимости от тяжести и особенностей инфекции, возможностей врача, медицинского учреждения или пациента [14].

1.2 Классификация противогрибковых препаратов

Противогрибковым (антимикотическое) действие характерно для целого ряда препаратов, которые в зависимости от химической структуры разделяются на несколько групп, отличающихся по спектру активности, фармакокинетике, переносимости и особенностям клинического применения (таблица 1.1) [8].

Таблица 1.1 – Классификация противогрибковых препаратов [8]

Группы	Представители
Полиены	Нистатин
	Леворин
	Натамицин (Пимафуцин)

		Амфотерицин В
Азолы	Имидазолы	Кетоконазол Клотримазол Миконазол
		Оксиконазол Бифоназол
	Триазолы	Флуконазол Итраконазол
Аллиламины		Тербинафин Нафтифин Аморолфин
Эхинокандины		Каспофунгин Микафунгин
Препараты разных химических групп		Гризеофульвин Флуцитозин Хлорнитрофенол Калия иодид

Синонимы клотримазола: амиклон, антифунгол, викадерм, гине-лотримин, имидил, йенамазол, кандибене, кандид, канестен, канизон, кломазон, клофан, лотримин, фактодин, фунгизид, фунгинал, фунгицип и др. [11]

2. ФАРМАКОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА КЛОТРИМАЗОЛА

2.1 Химическое строение и физико-химические свойства клотримазола

Химическое название: 1-[(2-Хлорфенил)дифенилметил]-1H-имидазол [9]. Структурная формула приведена на рисунке 2.1

Рисунок 2.1 – Структурная формула клотримазола [4]

Эмпирическая формула: C₂₂H₁₇ClN₂ [9, 14].

Молекулярная масса 344,84 [9].

Относится к противогрибковым средствам для местного применения из группы производных имидазола [9].

Физические свойства. Является белым или бледно-желтым кристаллическим порошком. Практически нерастворим в воде, растворим в 96% спирте и в метиленхлориде [4], трудно растворим в эфире, очень хорошо растворим в полиэтиленгликоле 400 [9].

2.2 Связь структуры и действия клотримазола

Клотримазол относится к группе азольных соединений, являющейся самой распространенной в настоящее время группой противогрибковых

препаратов. Для всех препаратов данной группы характерен широкий спектр антимикотической активности: они оказывают действие на дерматофиты, грибы рода Candida, плесени и проявляют активность также в отношении бактериальных агентов, простейших [1].

Клотримазол относится к мощному антимикотику, который действует против грибов, ингибируя синтез эргостерола, что, в свою очередь, приводит к структурным и функциональным нарушениям цитоплазматической мембраны (рисунок 2.2) [1, 6, 14, 17].

Рисунок 2.2 – Мишени основных химиотерапевтических препаратов в грибковой клетке [13]

Таким образом, основным способом действия клотримазола является повреждение клеточной мембраны, которое вызывает утечку внутриклеточных соединений фосфора с сопутствующим распадом клеточных нуклеиновых кислот и оттоком калия. После воздействия препарата на организмы, указанные событий происходят быстро и интенсивно, в результате чего вызывает зависящее от времени и концентрации ингибирование роста грибов.

На молекулярной основе клотримазол вмешивается в цитохром Р450-зависимое 14-α-деметилирование ланостерола или 24-метилендигидроланостерола, которое является основным этапом биосинтеза эргостерола.

Эргостерол является важным стероидом в грибах и отвечает за целостность клеток грибов. Последующее накопление 14-α-метилстерола рассматривается как основа фармацевтической активности [17].

Также клотримазол оказывает ингибирующее действие на синтез триглицеридов и фосфолипидов клеточной мембраны, снижает активность окислительных и пероксидазных ферментов, результатом чего является то, что внутриклеточная концентрация перекиси водорода повышается до токсического уровня, что способствует разрушению клеточных органелл и приводит к некрозу клетки. В зависимости от того, какова концентрация препарата может проявлять фунгицидный или фунгистатический эффект [6, 14].

Кроме этого, клотримазол оказывает ингибирующее действие на трансформацию бластоспор Candida albicans в инвазивную мицелиальную форму. В качестве основного преимущества клотримазола перед иными противогрибковыми средствами выступает эффективное воздействие как на патогенные формы грибов, так и на сопутствующую бактериальную флору – грамположительные (Streptococcus spp., Staphylococcus spp.) и анаэробы (Bacteroides spp., Gardnerella vaginalis) бактерии, бактерии семейства Corinebacteria и грамположительные кокки (за исключением энтерококков) [6].

In vitro для клотримазола характерен широкий спектр действия, охватывающий почти все патогенные грибы, являющиеся причиной инфекции у людей, а именно:

- дерматофиты (Epidermophyton floccosum, Microsporum sp., Trichophyton sp.);
- дрожжевые и плесневые грибы (Candida sp., Cryptococcus neoformans, Torulosis sp., Aspergillus sp., Cladosporium sp., Madurella sp., Rhodotorula, Malassezia furfur и другие);
- диморфические грибы (Blastomyces dermatitidis, Coccidioides immitis, Histoplasma capsulatum);

- возбудители эритразмы, анаэробные бактерии (Bacteroides);
- возбудители разноцветного лишая (Pityriasis versicolor);
- трихомонады, включая Trichomonas vaginalis.

Клотримазол применяется как в виде монопрепаратов, так и в виде комбинированных лекарственных средств [2].

2.3 Фармакокинетика клотримазола

Как уже было указано, в низких концентрациях препарат оказывает фунгистатическое действие. В минимальных фунгицидных концентрациях он способствуют выходу из клетки калия, внутриклеточных соединений фосфора и распаду клеточных нуклеиновых кислот. Клотримазол способен хорошо проникать в кожу и накапливаться преимущественно в роговом слое эпидермиса. При этом концентрация препарата в более глубоких слоях эпидермиса выше, чем МПК для дерматофитов. При нанесении на кожу клотримазол практически не оказывает системного действия [1].

Согласно фармакокинетическим исследованиям клотримазола при интравагинальном применении было показано, что абсорбция соответствует 3-10% введенной дозы. В печени происходит метаболизм клотримазола до фармакологически неактивных метаболитов, в связи с чем его концентрация в плазме крови в случае интравагинального введения в дозировке 500 мг соответствует менее чем 10 нг/мл, подтверждая таким образом тот факт, что клотримазол в случае интравагинального введении не приводит к значимым системным эффектам или побочным действиям.

В основном клотримазол метаболизируется в печени до метаболитов, которые выводятся через почки и кишечник [16].

2.4 Показания и противопоказания к применению клотримазола

Благодаря действия очень широкому спектру клотримазола, включающему не только многие грибы: дерматофиты, Candida spp., Malassezia spp., но и возбудитель эритразмы, грамположительные кокки, трихомонады, является возможным применение данного препарата при многих инфекциях кожи и слизистых. Клотримазол применяют при лечении дерматофитии, кандидоза кожи, В том числе осложненных вторичной бактериальной инфекцией, разноцветного лишая и эритразмы, а также в терапии кандидного вульвовагинита, трихомониаза или смешанной кандидно-трихомонадной инфекции [14].

Нежелательные реакции могут быть представлены легкой эритемой, жжением, зудом, сыпью [8].

3. СПОСОБЫ ПОЛУЧЕНИЯ КЛОТРИМАЗОЛА

Согласно патенту США №4073922, 1978 г. приведен состав для изготовления оральной таблетки, который представлен:

- клотримазолом 5,0 кг;
- кукурузным крахмалом 0,52 кг;
- микрокристаллической целлюлозой 1,8 кг;
- метоцелом 0,1 кг.

Фармацевтические композиции в виде мазей (кремов) широко отражены в патентной и научно-технической литературе. При том стоит отметить, что общий недостаток данной лекарственной формы заключается в том, что технология ее использования неудобная, особенно в случае лечения урогенитального кандидоза.

В качестве предпочтительной и рекомендуемой медицинской практикой для этой цели выступает интравагинальная таблетка клотримазола. Так, согласно патенту США №4661493, 1987 было описание Γ. дано интравагинальной таблетки на основе тиоконазола, являющегося противогрибковым препаратом ряда имидазола, состава в мг/в представленгого: тиоконазолом 100,0; лактозой 644,0; кукурузным крахмалом 372,0; стеаратом магния 10,8; натрийлаурилсульфатом 1,2 [12].

В качестве примера, иллюстрирующего изобретение RU2237476C1 выступает следующий:

Необходимо перемешать просеянные порошки 10 г клотримазола, 50 г лактозы, 19,75 г МКЦ и 19,6 г картофельного крахмала до однородности, а после увлажнить посредством раствора 15 г лимонной кислоты в 41 мл воды и пропустить через гранулятор. Влажные гранулы требуется высушить при 43-47°С до остаточной влаги 2-3% и пропустить через гранулятор. В результате получают 93,9 г (выход 94,4% от теории) сухого гранулята, который необходимо опудрить 0,47 г стеарата кальция и таблетировать на лабораторном прессе. В

результате получают 94 таблетки общей массой 94 г, имеющий срок годности более 2 лет [12].

Согласно патенту RU 2543655C1, способ производства указанного состава предпочтительно, но необязательно, осуществляют следующим образом:

- Готовят раствор натрия эдетата. В емкость загружают воду очищенную и динатрия эдетат. Смесь нагревают до температуры 65-70°С, перемешивая до полного растворения динатрия эдетата. Полученный раствор охлаждают при перемешивании до температуры 35-40°С.
- Готовят основу крема. В реактор-гомогенизатор загружают предварительно отвешенные пропиленгликоль, макрогол 400, макрогол 1500, макрогол 4000, полоксамер 338, цетостеариловый спирт, макрогола 20 цетостеариловый эфир. Нагревают компоненты основы крема до температуры 60-65°С при перемешивании скребково-лопастной мешалкой до полного растворения/расплавления компонентов основы крема. Полученную основу охлаждают до температуры 50-55°С при перемешивании.
- Растворяют клотримазол в основе крема. В реактор-гомогенизатор с основой крема загружают предварительно отвешенный клотримазол и перемешивают массу при температуре 50-55°C до полного растворения клотримазола.
- Вводят раствор динатрия эдетата в основу крема. В реактор-гомогенизатор с раствором клотримазола в основе крема количественно переносят раствор динатрия эдетата с начальной стадии процесса. В реакторе-гомогенизаторе создают вакуум и перемешивают содержимое при температуре 38-40°C до получения однородной массы.
- Охлаждают и дегазируют готовый крем. Полученный крем охлаждают при перемешивании под вакуумом до температуры 25-27°C, затем дозируют в тубы [2].

Рассмотрим еще один патент на изобретение кломидозола RU 2 171 804 C1 [15].

Наиболее близким по технической сущности является способ получения 1-(2-хлорфенил)дифенил-1Н-имидазола (клотримазола), который включает хлорирование 2-хлорбензилхлорида (Cl_2/PCl_3), обработку полученного 2-хлорбензотрихлорида бензолом в присутствии катализатора треххлористого алюминия и последующую обработку полученного 2-хлортритилхлорида имидазолом в присутствии триэтиламина [20].

Дифенил-(2-хлорфенил)метан (II) получают взаимодействием 2-хлорбензальдегида с бензолом в среде концентрированной серной кислоты при кипении бензола (рисунок 3.1).

$$C_{H} \xrightarrow{C_{6}H_{6}/H_{2}SO_{4}} \xrightarrow{C_{1}CI} \xrightarrow{CI} \xrightarrow{C$$

Рисунок 3.1 – Схема получения клотримазола: I – 2-хлорбензальдегид; II – дифенил-(2-хлорфенил)метан; III – 2-хлортритилхлорид; IV – клотримазол [15]

Процесс ведут до полного израсходования 2-хлорбензальдегида. Выход продукта составляет 85%. Дифенил-(2-хлорфенил)метан (II) представляет собой белые кристаллы с температурой плавления 76-77°C.

Способ получения дифенил-(2-хлорфенил)метана прост по исполнению, в нем используют выпускаемые промышленностью исходные органические реагенты, которые получают в одну стадию из доступного сырья.

При хлорировании (II) используются катализаторы -2,2'-азо-бис-изобутиронитрил или перекись бензоила, которые легко удаляются

с помощью перекристаллизации из гексана. На конечной стадии получения клотримазола (стадия В) в качестве реагента, связывающего выделяющийся в ходе реакции хлористый водород, используют имидазол, который после соответствующей регенерации можно вновь использовать в процессе [15].